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Abstract. Rising seas are a threat for human and natural systems along coastlines. The relation between global warming and

sea-level rise is established, but the quantification of impacts of historical sea-level rise on a global scale is largely absent.

To foster such quantification, we here present a reconstruction of historical hourly (1979-2015) and monthly (1900-2015)

coastal water levels and a corresponding counterfactual without long-term trends in sea level. The dataset pair allows for

impact attribution studies that quantify the contribution of sea level rise to observed changes in coastal systems following the

definition of the Intergovernmental Panel on Climate Change (IPCC). Impacts are ultimately caused by water levels that are

relative to the local land height, which makes the inclusion of vertical land motion a necessary step. Also, many impacts are

driven by sub-daily extreme water levels. To capture these aspects, the factual data combines reconstructed geocentric sea

level on a monthly time scale since 1900, vertical land motion since 1900 and hourly storm-tide variations since 1979. The

inclusion of observation-based vertical land motion brings the trends of the combined dataset closer to tide gauge records in

most cases, but outliers remain. Daily maximum water levels get in closer agreement with tide gauges through the inclusion

of intra-annual ocean density variations. The counterfactual data is derived from the factual data through subtraction of the

quadratic  trend. The dataset  is  made available openly through the Inter-Sectoral  Impact  Model Intercomparison Project

(ISIMIP).

1 Introduction

Sea-level rise is a threat to a significant proportion of the world’s population, which is concentrated near the sea. Global sea

levels have risen by 15 to 25 cm from 1901 to 2018 and are expected to rise by further 28 (lower bound of the SSP-1.9

scenario) to 101 cm (upper bound of the SSP-8.5 scenario) relative to the period 1995-2014 by 2100 (Fox-Kemper et al.
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2021). There are still gaps in the understanding of fast Antarctic ice loss, which may lead to sea-level rise above the upper

bound of the SSP-8.5 scenario. The trend in relative sea level rise is stated as a climate impact driver (Ranasinghe et al.

2021) for seven of the eight Representative Key Risks identified in the working group II contribution to the sixth assessment

report  of  the  Intergovernmental  Panel  on  Climate  Change  (IPCC,  AR6,  WGII,  chapter  16;  (O’Neill  et  al.  2022a).  It

contributes in particular as a driver of risks to low-lying coastal socio-ecological systems through irreversible long-term loss

of land, critical ecosystem services, livelihoods, well-being or culture in combination with other drivers of risk.

Several  studies  assessed  the  future  coastal  risks  from sea-level  rise  and  incorporated  important  drivers  such  as  socio-

economic development and population change (Hallegatte et al. 2013; Hinkel et al. 2014; Neumann et al. 2015; Hunter et al.

2017; Brown et al. 2018; Tiggeloven et al. 2020; Vousdoukas et al. 2020; Kirezci et al. 2023). There is, however, an absence

of works on observed impacts attributed to sea-level rise, though similar modeling approaches could be used. In particular,

there is a lack of studies to attribute historical coastal change or disturbances to sea-level rise in a global setting (O’Neill et

al. 2022a).  

Studies  on a  regional  scale  exist.  They attributed  changes  in  the  physical  quantities  of  historic  flood events,  e.g.,  for

hurricane Katrina (Irish et al. 2014) and Sandy (Lin et al. 2016), coastal retreat to sea-level rise in Senegal (Enríquez-de-

Salamanca 2020) and Pakistan (Kanwal et al. 2019), abrupt beach retreat in Tasmania to sea level rise and wind changes

(Sharples et al. 2020). Strauss et al. (2021) quantified the role of historical sea-level rise on economic damages for the

individual event of hurricane Sandy. Observed damages in Solomon Islands and Fiji have been assessed to be driven by

relative sea level rise (Albert et al. 2016; McNamara and Des Combes 2015). These examples are taken from the literature

review on impact attribution for the IPCC AR6 WGII Chapter 16 (O’Neill et al. 2022a), see O’Neill et al. (2022b) for a

comprehensive overview of studies1.  

Challenges for studies on impact attribution to sea level rise include the sparse observational data on flood extent required to

validate historical impact simulations on the global scale, with improvements becoming available only recently, e.g., through

the Global Flood Database (Tellman et al. 2021) and the Flood Inundation Archive (Yang et al. 2021) for flooded coastal

areas. Few datasets exist for longer-term change of coastlines (Mentaschi et al. 2018; Luijendijk et al. 2018). Global digital

elevation datasets are another important source of uncertainty as their vertical precision is largely below that of historical sea

level change (e.g., Van de Sande, Lansen, and Hoyng 2012; Gesch 2018), but there are promising recent advances (Hooijer

and Vernimmen 2021; Vernimmen and Hooijer 2023). There is, however, also a lack of forcing data to facilitate impact

attribution to sea-level rise.

With this study we aim to address the lack of forcing data and facilitate works that quantify the role of sea level rise in

historically observed phenomena at the coast. Such phenomena can be slowly-evolving changes like the retreat of sandy

beaches  or  extreme-event-driven  effects  like  economic  damages  from  coastal  flooding.  We  here  build  on  the  impact

attribution framework outlined in the IPCC AR6 WG2, ch16 (O’Neill et al. 2022a). The IPCC defines an "observed impact

1 https://www.isipedia.org/report/observed-impacts-of-climate-change/
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as the difference between the observed state of a natural,  human or managed system and a counterfactual  baseline that

characterises the system’s state in the absence of changes in the climate-related systems'' and further that the "difference

between the observed and the counterfactual  baseline state is  considered the change in the natural,  human or managed

system that is attributed to the changes in the climate-related systems (impact attribution)" (O’Neill et al. 2022a). 

As the counterfactual impact baseline cannot be observed, it needs to be modeled by an impact model. A precondition for

impact attribution is that the impact model explains the observed phenomenon under consideration reasonably well given its

drivers. This necessitates a model evaluation step, which is followed by the attribution step itself. The presented work aims

to make forcing data available for both steps: i) factual forcing data to evaluate impact models and produce factual historical

impact simulations and ii) counterfactual forcing data to produce counterfactual impact simulations. 

While the factual data should stay as close as possible to reality and is thus in principle set, the counterfactual data depends

on the specific  attribution question.  As coastal  systems changed fast  over  the  past  century  with climate  and  sea  level

presumably one but often not the dominant driver, we here ask the attribution question "how did historical sea level rise

affect observed phenomena in dynamic coastal systems with a multitude of drivers, irrespective of the origin of the sea level

rise?" We thus aim to delineate sea level rise from other drivers of change like population change, construction activity at the

coast or ecosystem degradation through direct human intervention. We do not focus on the causes of sea level rise itself, but

treat it as one driver of coastal change or disturbance in line with the IPCC definition (O’Neill et al. 2022a). Quantifying the

fraction  of  impacts  from anthropogenic  influence  on sea  level  rise  would  need  investigation of  the  causal  chain  from

emissions to sea level rise to impacts through a more complex attribution setup based on climate model ensembles (Hope et

al. 2022). 

Coastal systems ultimately experience the change of the water level at the coast relative to the height of the land, which we

term relative water  levels.  As relative water  levels are the most direct  input for impact models we provide factual  and

counterfactual relative water levels as our main dataset. This necessitates the inclusion of vertical land motion, which -

though an important driver of coastal impacts - has been less rigorously observed and researched on a global level than sea

level, and global datasets only are becoming available recently (Oelsmann et al. 2023; Hammond et al. 2021; Frederikse et

al. 2020; Hawkins, Husson, et al. 2019; Pfeffer et al. 2017). Consistent with the impact attribution definition of the IPCC we

do not investigate the drivers of vertical land motion itself, but treat it as a driver of impacts as a part of the relative sea level.

There is no predecessor for a global relative water level dataset.

We construct relative hourly and extended monthly coastal water levels globally for the historical period and a respective

counterfactual – the Hourly Coastal water levels with Counterfactual (HCC) dataset. For the factual dataset we combine data

resolving high temporal resolution to capture coastal storm-tide extremes (Muis et al. 2020), data covering the low frequency

variability and long-term trends in mean sea level (Dangendorf et al. 2019) and data for vertical land motion (VLM) based

on a probabilistic reconstruction from direct observations (Oelsmann et al. 2023). For the counterfactual dataset we remove

the long-term trends from the factual data.
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We describe the approach to create factual and counterfactual datasets in the section 'Materials and Methods', present the

main features of the dataset in the subsequent 'Results' section and provide a discussion in the final section.

Materials and Methods

Many impacts manifest through extreme sea-level conditions that  occur on the timescale of hours, which necessitates  a

product that resolves these timescales. We use the Coastal Dataset for the Evaluation of Climate Impact (CoDEC, Muis et al.

2020) to cover the high-frequency variation of storm tides along global coastlines. The dataset performs well in reproducing

historical extremes. However, CoDEC does not incorporate a full historical reconstruction of observed long-term mean sea-

level rise as it starts only in the year 1979 and does not reflect any changes in ocean density (i.e., sterodynamic) and mass

(barystatic). To capture the longer-term evolution of coastal water levels, we use the hybrid reconstructions (HR) dataset

from Dangendorf et al. (2019). It is the most recent spatio-temporal sea-level reconstruction and represents sea-level change

since 1900 on a monthly timescale. We adjust it for residual VLM to represent the evolution of water levels relative to the

geoid (geocentric).  Impacts are ultimately related to the height of the sea relative to the affected land. We combine the

geocentric water levels with the probabilistic VLM reconstruction from Oelsmann et al. (2023) to yield the evolution of the

water levels relative to the coast.

In the following we give a short description of the three source datasets.

1.1 Coastal Dataset for the Evaluation of Climate Impact (CoDEC)

CoDEC is an update of the Global Tide and Surge Reanalysis (GTSR, Muis et al. 2016) dataset  and uses a newer modeling

framework, higher resolution and newer climate forcing data. It is based on the hydrodynamic Global Tide and Surge Model

(GTSMv3.0), which uses the unstructured Delft3D Flexible Mesh software (Kernkamp et al. 2011) as shallow-water flow

solver and resolves coastal areas at high detail while being efficiently coarse in the open ocean. GTSM uses the depth-

averaged, barotropic mode of Delft3D, assuming a constant density of ocean waters. It explicitly models tides and storm

surges at a high temporal resolution. The model has global coverage and thus no open boundaries. The coastal resolution is

1.25km at European coasts and 2.5km at other global coasts. To produce CoDEC, GTSM is forced with the 10m wind speed

and atmospheric pressure from the ERA5 reanalysis (Hersbach et al. 2020). ERA5 determines the time coverage of CoDEC

from 1979 to 2017. The spatial resolution of ERA5 is 0.25° × 0.25° ( 31 km). Time series are saved at approximately∼
18,000  output  locations  that  are  located  at  10-50  km  distance  along  a  smoothed  global  coastline.  Validation  has

demonstrated that CoDEC reproduces extreme water levels at most tide gauge locations with a root mean squared error

(RMSE) of 0.26m (SD 0.73m) for the comparison between modeled and observed annual maxima at 485 tide gauge stations

in the GESLA2 database (Muis et al. 2020). For tropical cyclones with wind fields of relatively small spatial extent, extreme

water levels are expected to be underestimated due to poor representation in the meteorological forcing (Dullaart et al. 2020).
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Polar regions are not well resolved due to low-quality atmospheric forcing, poor bathymetry and the poor representation of

ice dynamics.

The hybrid reconstructions (HR) dataset. 

The HR dataset (Dangendorf et al. 2019) combines two methodologies to reconstruct historical sea-level rise from tide gauge

and satellite observations. Both methodologies are prominent sea-level reconstruction approaches on their own (Church et al.

2011; Hay et al. 2015) and have their distinct advantages and shortcomings. HR applies each methodology at time scales

where they have well-proven performance. The HR dataset covers the period 1900-2015 and has  monthly time resolution.

Thus it cannot provide sea-level variability on shorter than monthly timescales, which needs to be introduced by CoDEC.

Since  HR  is  based  on  observations,  the  data  includes  all  sea-level  processes  that  are  not  explicitly  removed.  Most

importantly,  it  includes the effects  of  Gravitation,  Rotation,  and Deformation  of  the  Earth accompanying  the  sea-level

change from mass addition through melting glaciers and ice sheets, changes due to density variations of the ocean water and

dynamic ocean currents, and variations induced by the inverse barometer effect. By construction, HR includes the sea-level

variability  from wind and  atmospheric  pressure  changes,  which  are  also represented  in  the  CoDEC dataset.  Note  that

modulations due to the nodal cycle driven by the varying declination of the moon in time are not explicitly modeled within

the HR framework.

Vertical Land Motion dataset

We use vertical  land motion data from (Oelsmann et  al. 2023) that  provide a probabilistic annual vertical  land motion

reconstruction from 1995-2020 based on more than 10,000 time series  from global navigation satellite system (GNSS)

stations and differences  of  altimetry and tide gauge observations.  Their  approach  accounts  explicitly for  a  linear  trend

component and non-linear variations with time. It adapts methods so far used for the reconstruction of absolute sea level

changes (e.g., Church and White, 2011) using empirical orthogonal functions. The spatiotemporal variations are interpolated

along the world’s coastlines using adaptive Bayesian transdimensional processes (Hawkins, Husson, et al. 2019; Hawkins,

Bodin, et al. 2019). By accounting for the non-linear components of the temporal evolution, the estimated linear trends over

the last century (1900-2000) are expected to be more robust. The nonlinear components capture for example the present-day

effects (since 1995) of earthquakes, which can introduce extreme variations in observed VLM trends up to centimeters per

year, or instantaneous displacements with a magnitude of several centimeters to meters.

Tide Gauge datasets

We use two different tide gauge datasets to evaluate the reconstruction. To evaluate long-term sea level change we use the

tide gauge measurements of monthly mean sea level from the Permanent Service for Mean Sea Level (PSMSL, Woodworth

and Player 2003). To evaluate the higher frequencies shorter than a month we use the tide gauge data provided by the
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GESLA-2 database (Woodworth et al. 2016). Following Wahl et al. (2017) we use one merged file for each site in cases

where there are several files for different time periods in the GESLA-2 database, remove data points flagged as suspicious

outliers or datum shifts, and interpolate all records to hourly resolution. We align all tide gauge records to a common vertical

datum by subtracting the mean sea level over 1993 - 2015. Then, to align them to the HCC data, we add the HCC mean for

the same period to the tide gauge records.  To ensure that this alignment is valid we select only GESLA-2 and PSMSL

records with at least one year of observations in the interval 1993 - 2015. Additionally, PSMSL records are restricted to

those with at least 20 years of observations. Those restrictions lead to a total of 705 stations in the PSMSL and 714 stations

in the GESLA-2 database respectively. The stations are illustrated in Fig. 1 with colors referring to ocean basins following

the definition of Thompson and Merrifield (2014). 

Figure 1: Tide Gauge stations used for the evaluation of the presented dataset. Colored “+” markers show tide gauge stations from
the GESLA-2 database, “x” markers for tide gauge stations from the PSMSL database and circles show GESLA-2 stations that
have at least one year of observations in the period 2009 - 2013.  The respective ocean basins are shown as colored areas. Map
adapted from (Thompson and Merrifield 2014) with an additional division of the North Atlantic into West and East.

Factual water levels

We adjust the Hybrid Reconstruction (HR) dataset (Dangendorf et al., 2019) for vertical land motion contributions to obtain

geocentric water levels. The contributions of vertical land motion in HR consist of two parts. The first part is due to long-

term glacial isostatic adjustment since the glacial maximum 21,000 years ago which is explicitly modeled in HR and can

thus be readily taken out. The second VLM contribution is due to short-term crustal responses to present-day ice melt since

1900 (Pfeffer et al., 2017; Spada, 2017; Riva et al., 2017) which is implicitly contained in HR through cryostatic fingerprints

that are fitted to tide gauges.We use  the annual reconstructions of the crustal responses to present-day ice melt from glaciers,

the Antarctic ice sheet and the Greenland ice sheet from Frederikse et al. (2020) to remove this contribution. 

For the monthly-resolved dataset of relative water levels we add vertical land motion from Oelsmann et al. (2023) to the

adjusted  geocentric  HR  data.  As  Oelsmann  et  al.  (2023)   is  based  on  direct  observations  it  covers  VLM  more
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comprehensively than HR for the period of available observations (1995 to 2015). For this period we interpolate the annual

VLM reconstructions linearly to a monthly scale and extrapolate it back to the year 1900 with the reconstruction of the linear

component of VLM.

The outcome describes the monthly-resolved long-term evolution of relative coastal water levels. To include hourly variation

in coastal water levels we add hourly CoDEC data. Barotropic water level changes due to wind and atmospheric pressure on

time scales longer or equal to one month are covered in both our monthly dataset and the CoDEC dataset. We use frequency

filtering to avoid their double counting. Barotropic sea-level variations due to wind and atmospheric pressure are explicitly

modeled in the CoDEC dataset whereas HR is based on a statistical reconstruction method based on sparse observations.

However, HR is not restricted to barotropic variations alone and covers the full spectrum of intra-annual and longer sea-level

variations (including sterodynamic and barystatic processes). We thus expect that it depends on the location which product

performs  better.   We have  therefore  tested  for  different  cutoff  frequencies  and  how it  affects  the  performance  of  the

combined product when compared to tide gauges. We varied the cutoff frequency for values of 1, 2, 3, 4, 5, 6, and 12 months

and found an optimal cutoff frequency of 3 months (90 days).

Before filtering we first deseasonalize our combined monthly dataset and the CoDEC dataset, such that seasonality does not

impact the filtering process. We deseasonalize CoDEC by removing its monthly average climatology over the years 1993-

2015  which  is  interpolated  to  hourly  resolution  with  cubic  spline  interpolation.  To  keep  the  nodal  cycle  in  the  final

reconstruction, we first subtract the tidal contribution to the water levels and only high-pass filter the non-tidal residuals of

the CoDEC data. We deseasonalize  our combined monthly dataset by removing the seasonal cycle which we calculated

from AVISO2 satellite observations by taking the monthly average climatology over the years 1993-2015.

We then subtract the 90-day running mean value from the deseasonalized non-tidal residuals of the CoDEC data. This high-

pass filter removes contributions to sea-level variability longer than three months. Correspondingly, we low-pass filter our

deseasonalized  combined  monthly  dataset  by  taking  its  90-day  running  mean  value  to  only  retain  contributions  with

frequency longer than three months. We combine both filtered products by first interpolating the low-pass filtered combined

dataset and the seasonal cycle from AVISO to the hourly target resolution of CoDEC using cubic spline interpolation. We

then sum the high-pass filtered CoDEC, the low-pass filtered and interpolated combined monthly dataset, the tidal levels

from CoDEC and the interpolated seasonal cycle from AVISO. We apply the same process excluding VLM reconstruction to

yield a geocentric version of the combined dataset.

To yield a common vertical reference, we shift the geocentric version of our dataset vertically to have the same average sea

level as the satellite altimetry for the time period 1993 - 2015. It thus describes sea-surface height above the WGS 84 Geoid

equal to AVISO3. We align our relative version of the dataset with the geocentric version such that the water levels in both

datasets are equal on the last date of the record.

2 https://www.aviso.altimetry.fr/   

3 https://resources.marine.copernicus.eu/product-detail/SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047/  

INFORMATION 
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Counterfactual water levels

We generate counterfactual water levels that exclude the trends since the beginning of the 20th century but preserve the

short-term sea-level variability of the factual dataset. For each location we estimate a quadratic trend using linear regression

on the annual mean time series with the intercept fixed at the average sea level in 1900-1905. We remove this long-term

trend from the factual time series to yield the counterfactual time series. Covering the period from 1900 to 2015, the record

is sufficiently long so that the influence of sea-level variability on the trend estimation can be expected to be minor. We

therefore do not include predictors for the main modes of climate variability as for example in (Menéndez and Woodworth,

2010; Marcos and Woodworth, 2017; Wang et al., 2021). 

As the water height relative to the coast is needed as input for impact models the factual/counterfactual tuple can be used as

forcing in such models directly. We additionally provide a counterfactual of the geocentric version of the factual dataset

excluding the effects of VLM. The geocentric factual/counterfactual tuple can be used if it is known from other sources that

VLM is  negligible  or  if  better  VLM estimates  are  available  regionally.  To  yield  a  counterfactual  consistent  with  our

approach, the VLM quadratic trend since 1900-1905 would need to be estimated from the regional VLM data and then

subtracted from the geocentric counterfactual dataset.

Results

We provide the factual  and  counterfactual  datasets  with hourly resolution for  the time period 1979-2015 and monthly

resolution for the time period 1900-2015. 

Long-term sea level trends

We evaluate the performance of our dataset by comparing it to tide gauge measurements from the PSMSL database with at

least 20 years of observations. As tide gauges measure sea level relative to their position on land we can directly compare

them with our dataset. For aligning observed and modeled RSL we subtract the respective mean value over years with valid

observations from 1993-2015 from both datasets. To visualize long-term sea level change we plot the linear trend from the

tide gauges and the modeled coastal water levels respectively for years with valid observations. Our dataset reflects well the

different trends in different world regions (Fig. 2a), aligned by ocean basin and ordered by latitude (Fig. 2c). 
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Figure 2: Performance of our HCC dataset and the HR dataset compared to tide gauges from the PSMSL record. Panel a: Linear
sea level trend for years with valid observations for tide gauge records (black) and HCC (blue) connected by a gray bar. Panel b:
RMSE between observed and modeled RSL as blue and pink dots for HCC and HR respectively. RMSE values for the same tide
gauge station are connected with a blue bar if HCC has a lower RMSE than HR and with a pink bar if it is higher. Panel c:
Latitude of tide gauge locations sorted by ocean basin. Outliers are not plotted.

We evaluate the performance of our dataset through its root mean squared error (RMSE) against observations and compare it

to the performance of the HR dataset (Table 1). Our dataset shows a median RMSE of 5.58 cm (std. 5.53 cm) over all tide

gauge  stations  which  is  an  improvement  compared  to  the  HR with  a  median  RMSE of  5.81  cm (std  6.06  cm).  The

improvement occurs in all 7 basins and is pronounced in the Subtropical North Atlantic with a median RMSE of 4.60 cm

(std. 2.78 cm) as compared to 5.54 cm (std. 6.18 cm) in HR.  Figure 2b provides more detail, showing RMSE per tide gauge.

In  the  higher  latitudes  of  the  East  Pacific  our  dataset  has  a  lower  RMSE than  HR for  most  stations  (Fig.  2b).  The

performance also decreases at tide gauges in the lower northern latitudes of the East Pacific. As these regions are all located

at plate boundaries and are thus highly prone to tectonically induced VLM, this may hint to problems in the extrapolation

back in time to 1900 from recent VLM data for such regions. However, in summary for all locations we see the inclusion of

observational VLM and its backward extrapolation superior to approaches that only include the glacial isostatic adjustment

component of VLM and neglect other contributing processes as can be seen in the overall improvement of median RMSE.
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PSMSL GESLA-2

1900 - 2015 1979 - 2015 2009-2013

Monthly means Daily max. values Monthly means Bias of 
extreme 
surges

HCC
(ours)

HR HCC*
(ours)

CoDEC* HCC*
(ours)

HR* HCC (ours)

Subpolar North 
Atlantic East

5.66
(3.75)

5.76
(3.53)

12.50
(30.62)

12.01
(30.42)

3.55
(4.27)

3.96
(4.25)

-8.94
(20.43)

Subpolar North 
Atlantic West

4.30
(11.47)

4.73
(11.97)

31.44
(23.30)

31.62
(23.20)

4.02
(4.65)

4.47
(4.64)

-16.63
(18.33)

Subtropical 
North Atlantic

4.60
(2.78)

5.54
(6.18)

10.48
(10.45)

11.80
(10.08)

3.76
(1.87)

3.99
(1.80)

-12.72
(18.59)

South Atlantic 9.29
(3.13)

9.76
(3.11)

12.58
(16.63)

12.66
(17.36)

3.88
(2.77)

4.11
(2.73)

-11.57
(15.21)

East Pacific 7.41
(4.26)

7.80
(7.47)

13.64
(17.01)

13.96
(16.83)

4.06
(2.85)

4.19
(2.96)

-21.89
(34.66)

Northwest 
Pacific

5.65
(6.49)

5.75
(6.07)

8.52
(10.45)

10.98
(9.92)

3.80
(1.87)

3.73
(1.92)

-14.16
(18.80)

Indian Ocean - 
South Pacific

5.24
(6.38)

5.38
(6.51)

14.58
(35.58)

14.99
(35.38)

3.85
(3.61)

4.12
(3.44)

-13.25
(22.48)

Global 5.58
(5.53)

5.81
(6.06)

12.36
(26.39)

13.00
(26.16)

3.77
(3.39)

4.01
(3.36)

-13.01
(23.12)

Table 1: RMSE in cm between tide gauge observations and different reconstructions of coastal water levels. For the comparison on
daily maximum values, time series are detrended by removing annual means (marked with an * in the table header). Rows contain
median and standard deviation (in brackets) of RMSE in cm aggregated for different basins and globally. The rightmost column
shows median bias of the top one percent daily maximum surge levels between HCC and tide gauge observations. Negative values
indicate that HCC underestimates the observed surge level.

Intra-annual variability

To evaluate our dataset on timescales shorter than a year we compare it with observations from the GESLA-2 database. For

illustration, in Fig. 3 we first show daily mean values for CoDEC, HR and our dataset as anomalies to their respective yearly

mean in the year 2001 for five selected tide gauge stations. For the example of Stockholm, Sweden, the density variations

modulating sea level during the annual cycle as present in HR bring the atmospheric wind- and pressure-driven variability
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from CoDEC significantly closer to observations and thus improve the performance in our combined dataset. A similar effect

is evident for Toyama, Japan and Miami, USA. For the stations of Zanzibar, Tansania, and Rio de Janeiro, Brazil, sea-level 

variation of HR is low as compared to the total sea-level amplitude, thus the factual dataset and CoDEC evolve similarly and

an improvement is not evident. Both stations are located in areas that are barely covered by tide gauges used in HR.
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Figure 3: Illustrative comparison of our HCC (blue line), the HR (pink line) and CoDEC (red line) datasets with observations
(black line) at five example tide gauge stations.  We show daily mean values for the year 2001 that are vertically aligned by
removing the respective annual mean sea level.

We assess if improvements are visible over all tide gauges in Fig. 4. We compare coastal water levels from our dataset,

CoDEC and HR through their respective RMSE against tide gauge observations. Following Muis et al (2020), each dataset is

detrended by subtracting the annual mean from each time series and each year respectively. This means that a performance
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improvement is due to better alignment of intra-annual variability with tide gauges as interannual mean sea-level change is

explicitly excluded. For most locations the RMSE against tide gauge observations from GESLA-2 is lower for our detrended

monthly dataset than for HR, visualized by blue bars in Figure 4a. The global median RMSE of our dataset is 3.77 cm (std.

3.39 cm) compared to 4.01 cm (std. 3.36 cm) for the HR dataset. The improvement is consistent over all basins except for

the Northwest Pacific where the median RMSE for our dataset of 3.80 cm (std. 1.87 cm) is slightly higher than for HR with

3.73 cm (std. 1.92 cm) (Table 1). The improved performance of our dataset is stronger in mid to higher latitudes of the North

Atlantic and some stations in the East Pacific. In the East Pacific and Indian Ocean - South Pacific there is a mixed picture

with some stations showing a lower performance than HR (green bars Fig. 4a). Wind and air-pressure driven barotropic sea

level variability is more pronounced in mid to higher latitudes (Merrifield et al., 2013) which might explain the improved

performance of our dataset  in these regions since it  uses sea-level variability from CoDEC on a time scale up to three

months. This is plausible as wind and air-pressure driven sea level variability are explicitly modeled in CoDEC and only

interpolated  from  sparse  observations  in  HR.

Figure 4. Comparison between our HCC dataset, HR, CoDEC and tide gauge records from PSMSL and GESLA-2. Panel a:
RMSE of monthly mean sea level between HCC and PSMSL (blue dots)  and HR and PSMSL (pink dots). Dots are connected with
a blue bar if monthly HCC has a lower RMSE than HR and with a pink bar if it has a higher RMSE. Panel b: RMSE between
annually detrended HCC and GESLA-2 (blue dots) and annually detrended CoDEC and GESLA-2 (red dots). Dots connected
analogously to panel a. Panel c: Latitude of tide gauge locations sorted by ocean basin. Outliers are not plotted.
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Daily maximum water  levels in our dataset  have a global median RMSE of 12.36 cm (std. 26.39 cm), which is lower

compared to CoDEC with a median RMSE of 13 cm (sdt. 26.16 cm). This improvement is evident for almost all stations as

illustrated by the blue bars in Fig. 4b. The largest performance increases are in the Northwest Pacific where our dataset has a

median RMSE of 8.52 cm (std. 10.45 cm) compared to 10.98 cm (std. 9.92 cm) for CoDEC and is almost halved to values as

low as 50 mm for some stations (Fig. 4b). The more important role of ocean density variations as compared to wind- and air-

pressure-driven variability is a plausible explanation for the stronger increase in performance in the lower latitudes. Density

variations are captured in our dataset through the inclusion of HR and the seasonal cycle from AVISO.

Extreme Water Levels

To illustrate the role of the long-term trend for sea level extremes, we investigate extreme water levels in our factual and

counterfactual dataset and compare them to tide gauge observations from GESLA2. We only consider extreme events from

2009-2013 because this period is well covered in the observations and sea-level rise is close to its maximum. We restrict our

analysis of extreme water levels to tide gauge stations with at least one year of data in the considered period which leaves a

total of 520 stations. As astronomical tides introduce a strong offset in extreme water levels and thus make the comparison

between different locations difficult, we here remove astronomical tides from the modeled and observed water levels and

focus on the surge component. As coasts are historically adapted to their tides, extreme surges are an important cause for

extreme impact events and their damages. Tides for the observations are estimated by fitting harmonic functions with 69

harmonic components as described by (European Commission, Joint Research Centre, Probst, P. , Annunziato, A., 2017). To

preserve variability with frequencies larger or equal to one month we predict harmonic tides based on fitted parameters for

65 sub-monthly harmonic components only, leaving out 4 components with frequencies larger or equal to one month. We

then remove the predicted harmonic tides from the observations. See the method section for a description of the removal of

tides in our dataset. To level out differences in surge height between different stations caused by permanent differences to

the geoid, we remove the mean value from 2009-2013 from tide gauges and our datasets. We then pick the 18 highest (the

top one percent) daily maximum water levels from the observational data in the years 2009-2013. These correspond to the

one percent highest daily maximum water levels in these years. We compare those to the maximum values at the same day in

our factual and counterfactual dataset, respectively.

We show this top one percent highest water levels for our factual and counterfactual dataset, and the tide gauge observations

in Fig. 5a. In general, there is a good agreement between modeled extreme water levels (blue bars) and observations (black

markers). However, our dataset underestimates the extreme water levels at most locations with a median bias of -13.03 cm

(std. 23.12 cm). This underestimation is pronounced for the East Pacific with -21.89 cm (std. 34.66 cm) and Subpolar North

Atlantic West with -16.63 cm (std 18.33 cm) (Table 1). There is a known low bias in the model in particular for the highest

water levels originating from the CoDEC dataset. It is largely attributed to the spatial resolution of the atmospheric inputs

(Muis et al., 2020). We aligned our dataset and the observations by the mean over the available data from 1993 to 2015 for

Figure 5a. A bias can also emerge from a different trend between our dataset and observations for this period. 
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By design, the counterfactual dataset preserves the daily, monthly and interannual variability of the factual dataset. Extreme

sea-level events have the same timing in the counterfactual and the factual. We can thus pick the timings of the one percent

highest water levels from the factual dataset and assess the events in the counterfactual dataset in Figure 5a. The trend in

relative coastal water levels increased extreme water levels for almost all world regions with the counterfactual lying below

the factual for most tide gauge locations. Especially for regions with low surge magnitudes it often contributes a significant

fraction to the extreme event. The situation is different for the high northern latitudes where counterfactual sea-level rise is

above the factual. In these regions the extreme event magnitude is reduced primarily due to the influence of glacial isostatic

adjustment  (Emery and Aubrey,  1985).  In  some regions the counterfactual  is  below zero.  These are regions where the

highest  surge levels  are  close to  the mean sea level  from 2009-2013.  With the factual  not much higher than zero the

counterfactual without the sea level trend since 1900 easily falls below zero.

 
Figure 5: Range and mean of the top one percent of extreme coastal  water levels  without astronomical  tides for tide gauge
observations (black), our factual  (blue) and our counterfactual (orange) HCC data (panel a). The mean value of the factual HCC
data from 2008-2013 is subtracted from all three datasets. Panel (b) shows mean coastal water level change from 1900 to 2015,
computed by subtracting the mean value over 2010-2015 from the mean value over 1900 to 1905. Blue markers show coastal water
level change for the presented  dataset and is decomposed into the geocentric component (gray bars) and the contribution of
vertical land motion (brown bars). Orange markers show the respective counterfactual mean coastal water level change. Latitude
of tide gauge locations sorted by ocean basin (panel c). Outliers are not plotted.
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We illustrate the contribution from geocentric water levels and VLM to the relative coastal water levels in Fig. 5b. The

contribution of geocentric waterlevels is relatively stable across locations. This is in contrast to the contribution from VLM,

which is more variable across locations. In many places both processes have a similar order of magnitude and there are some

regions where VLM exceeds changes in geocentric water levels. This has been recognized in earlier works (Oelsmann et al.

2023, Nicholls et al., 2021; Pfeffer et al., 2017; Hawkins et al., 2019b; Hammond et al., 2021; Wöppelmann and Marcos,

2016). 

We produced the counterfactual by estimating the quadratic long-term trend in the factual RSL data and subtracting it. To

illustrate our approach we show relative sea-level rise between the start and the end of the counterfactual dataset (difference

1900-1905 mean and 2010-2015 mean, orange dots in Fig. 5b). It is close to zero for most locations. This means that the

counterfactual is largely free of long-term trends, underlining the validity of the approach. 

Discussion

In this work, we combine datasets of long-term sea level change, short-term coastal water level variability and vertical land

motion to  yield a  forcing  dataset  for  historical  simulations with coastal  impact  models.  To facilitate  the  attribution of

historical impacts to sea level rise, we complement the dataset with a counterfactual. 

The task poses several challenges. A major one is the inclusion of VLM to yield relative coastal water levels. VLM can only

be directly measured since GNSS data became available on a larger scale in the early 2000s (Hammond et al., 2021). While

the glacial isostatic adjustment component of VLM can be well approximated by a linear trend, other VLM processes are

often highly nonlinear or of local origin and can  thus not be easily extended backward to 1900. We still decided to include

VLM beyond glacial isostatic adjustment to stay as close as possible to observations though increasing data uncertainty. 

We  incorporated  a  VLM  dataset  directly  derived  from  observations  as  the  most  independent  source  for  such  data.

Alternatives to this approach exist and were already used in earlier datasets. One possibility is to only account for VLM that

is caused by glacial isostatic adjustment which can directly be modeled, or implicitly through cryostatic fingerprints in the

case of responses to present day ice melt (Dangendorf et al., 2019). Another possibility is to approximate non-linear effects

from the residual between tide gauge observations and reconstructions (Hay et al., 2015; Kopp et al., 2014; Dangendorf et

al., 2021), which can be valuable to extend observations in time when no GNSS data are available. This residual approach

depends on long tide gauge records which have an uneven and sparse global coverage and is thus not fully suitable to

generate a densely interpolated coastal estimate. 

Another challenge originates from the different nature of the source datasets that we combine. HR and the VLM data are

built from observations, thus include all contributing processes, but there are limits for the disentanglement of components in

these datasets. CoDEC is a simulation-based dataset in which the individual components are available, but CoDEC does not

capture all processes. We avoid double counting atmospherically-driven barotropic sea level changes by frequency filtering

which affects all processes. The choice of a specific cutoff frequency is a trade-off as it means that processes with higher
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frequencies come from the CoDEC dataset without coverage of density-driven sea level variability. Partly we can account

for that by frequency filtering only deseasonalized data and adding the seasonal cycle from AVISO satellite altimetry. For

processes  with  lower  frequencies  than  the  cutoff,  sea  level  variability  comes  from  HR  which  covers  density-driven

variability but is for many regions not as good in covering atmospherically driven variability as CoDEC.

We decide for  a  cutoff  frequency of  three months for  all  locations based on performance comparison with tide gauge

observations.  The optimal  cutoff  frequency  could  also be chosen to  vary  between  regions  depending  on the  dominant

regional  processes. We decide against that because such a method poses the risk of overfitting, in particular for regions

sparsely covered by tide gauges. It would also be unclear how to choose the frequency for locations not covered by tide

gauges. 

HR does not cover regions with sea ice because there is no continuous coverage of altimetry for those regions. Our coastal

water levels in those regions are based on extrapolation of HR and need to be used with extreme care. We provide a mask

along with the dataset so users can exclude sea ice areas. For some of these regions, namely for Greenland, Siberia and

Antarctica, VLM data is also absent (Oelsmann et al., 2023). 

To derive a counterfactual dataset in line with the concept of impact attribution of the IPCC, we use a simple quadratic

model to first estimate and then remove the sea-level trend since 1900 from the factual dataset. The quadratic model assumes

a constant acceleration of sea-level rise over time. Analysis of sea-level rise shows variation throughout the last century with

an acceleration phase in the early century followed by a deceleration and then again acceleration until today (Dangendorf et

al., 2019). By design, this variation is not included in our quadratic trend estimate. In general, we expect our trend estimation

to largely exclude natural  variability due to its low dimension and the long data period. This is a desired outcome and

preserves the natural variability in the counterfactual. 

In contrast to atmospheric climate change, there is no pre-industrial period in which sea level was stable over time. There is

therefore not a clear indication for the time period that we can reference as the baseline for the counterfactual. We here took

the practical choice of making the years 1900-1905 the reference time because this is when the HR dataset starts. In a strict

sense, with the counterfactual forcing data we thus mimic a sea-level world of the beginning of the 20th century and not a

world in  which sea-level  rise has  not  occurred.  The approach  produces  counterfactuals  that  are  largely  stationary,  but

incorporate  the same shorter-term variability  as  the factual  dataset.  The data thus also allows for  impact  attribution of

individual coastal extreme events. For an extended discussion of the concept see (Mengel et al. 2021).

Without  additional  analysis,  the  presented  work does  not  allow for  the  attribution of  coastal  impacts  to  anthropogenic

greenhouse gas emissions, mediated through sea-level rise. Such additional steps would need the differentiation between

climate variability and forced climate response. This is usually done via large model ensembles and dedicated experimental

setups like DAMIP (Gillett et al., 2016). While attribution of global mean sea level change to anthropogenic emissions is

possible (e.g.  Slangen et  al. 2016),  the task of separating variability from the forced signal  is  more challenging on the

regional level that is necessary for impact assessments and not yet possible over the 20th century (Fox-Kemper et al., 2021).

We here exclude deliberately the separation of anthropogenic and non-anthropogenic forcing of sea-level rise as it often
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becomes the focus of impact  attribution studies  and sidelines  the more  difficult,  less  researched,  but in  our view very

relevant issue of separation of climate change from direct human interventions as drivers of observed changes in natural,

human and managed systems. Additionally, large earth system model ensembles that would allow for the attribution to

emissions but also reliably capture all major sea level components are not available so far.  

We provide the factual  and  counterfactual  dataset  as  part  of  the  ISIMIP3a simulation round.  This  simulation round is

dedicated to the evaluation of impact models and to impact attribution. ISIMIP already provides datasets on some additional

drivers of coastal impacts, such as change in population, land use, economy or urban area4. With the presented data, we aim

to facilitate the development of a new generation of coastal impact models that explicitly resolve the observed spatial and

temporal coastal changes and disturbances. 

Code and data availability

The  source  code  (v1.0)  underlying  the  analysis  and  produce  the  figures  presented  in  the  paper  is  archived  at

https://doi.org/10.5281/zenodo.7771501 (Treu, 2023). All code is open to use under the Creative Commons Attribution 4.0

International  license.  The presented counterfactual  climate dataset  is  archived at  https://doi.org/10.5281/zenodo.7771386

(Treu et al., 2023) and based on v1.0 of the source code.
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